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Introduction

The majority of RTM studies to-date have tested risk terrain models through logistic regression with shooting
incidents as the dependent variable (Caplan et al., 2011; Kennedy et al., 2011). In logistic regression, the
dependent variable is dichotomized to represent either the presence (“1”) or absence (“0”) of a particular feature.
In the case of shootings, logistic regression tests the influence of the independent variable(s) (e.g. “risk values”) on
the presence or absence of any shooting incidents. Given the infrequent occurrence of shootings (compared to
other crime types), and the fact that most spatial units are unlikely to have more than 1 incident, logistic
regression is an appropriate statistical test in such cases. However, for more frequently-occurring crime types,
logistic regression may undercount the total number of crimes since multiple incidents are collapsed into a single
unit to fulfill the requirements of logistic regression. Such undercounting of incidents may depreciate the validity
of the model, particularly by underestimating the predictive capacity of risk terrain models. This brief discusses the
use of count regression models, namely Poisson and negative binomial regression, as a method of overcoming the
limitations of logistic regression in RTM studies focusing on more frequently-occurring crime types.

Count Regression Models

While the collapsing of data with more than 2 unique values into a dichotomous variable (e.g. “presence” or
“absence”) allows any dataset to be incorporated in a logistic regression model, such an approach considerably
minimizes variance across spatial units. This may lower the statistical power of the model, which may increase the
chance of accepting the null hypothesis when a significant relationship exists between the dependent variable and
independent variable(s)—a situation commonly referred to as a “Type II” error (Britt & Weisburd, 2010: 313). Said
differently, when underpowered, the statistical model may find the dependent and independent variable(s) to be
unrelated even when a significant relationship actually exists. Using a technique able to incorporate non-
categorical data preserves the statistical power of the analysis, and may be preferable to logistic regression in
certain instances.

Many analysts first consider linear regression models when working with non-categorical data. Linear
regression, particularly Ordinary Least Squares (OLS) regression, represents one of the most traditional statistical
techniques in applied research. However, OLS regression models rest on particular assumptions which oftentimes
are not satisfied with criminology data (Maxfield & Babbie, 2001: 404). OLS assumes that the dependent variable is
a continuous value, normally distributed (e.g. not skewed), and linearly related to the independent variables
(McClendon, 1994). Crime data, in particular, rarely adheres to these assumptions. Most crime incidents are
distributed as “rare event counts.” Said differently, smaller values are much more common across spatial units
than larger values with zero often being the most commonly observed value. Such a distribution violates the
aforementioned assumptions of OLS regression.

Poisson and negative binomial regression models are designed to analyze count data. The “rare events”
nature of crime counts are controlled for in the formulas of both Poisson and negative binomial regression.
However, Poisson and negative binomial regression models differ in regards to their assumptions of the
conditional mean and variance of the dependent variable. Poisson models assume that the conditional mean and
variance of the distribution are equal. Negative binomial regression models do not assume an equal mean and
variance and particularly correct for overdispersion in the data, which is when the variance is greater than the
conditional mean (Osgood, 2000; Paternoster & Brame, 1997). Many have noted that criminological data rarely
exhibits equal means and variances, leading to the increased popularity of negative binomial regression in
contemporary studies of crime (MacDonald & Lattimore, 2010).

Choosing between Poisson and Negative Binomial Regression Models

Choosing between Poisson and negative binomial models depends on the nature of the distribution of the
dependent variable. Analysts commonly select negative binomial regression purely because the assumptions of
Poisson models are often not observed with social data. However, Poisson distributions are far from nonexistent,
with some researchers even observing the presence of both Poisson and negative binomial distributions within the
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same study (see, for example, Braga & Bond, 2008). Therefore, analysts should measure the distribution of their
data before choosing between Poisson and negative binomial regression. Measuring the distribution of count data
is a fairly straightforward process. Particularly, Pearson Chi-Square goodness-of-fit tests can be incorporated along
with exploratory Poisson regression models to measure the distribution of the dependent variable. This simple test
identifies the distribution of the data and ensures the selection of the correct statistical model.

Table 1 displays the results of a Poisson model with “Risk Value” as the independent variable and the
count of Burglary incidents as the dependent variable. The Pearson goodness-of-fit test results (encompassed by a
red rectangle) indicate that the distribution of burglary incidents significantly differs for a Poisson distribution,
according to the p value of 0.000 (“Prob > chi2”), which falls below the standard threshold of 0.05 . Therefore,
negative binomial regression is more appropriate for this particular data set.

Table 1: Poisson goodness-of-fit test

Poisson regression Number of obs = 14183
LR chi2 (1) = 89.42
Prob >» chiz = 0.0000
Log likelihood = -5664.3864 Pseudo R2 = 0.0078
Burg_Count Coef. Std. Err. z P>|z| [95% Conf. Interval]
RiskValue .2222416 .0228976 9.71 0.000 .1773632 .26712
_cons -2.35222 .0370918 -63.42 0.000 -2.424919 -2.279522
. poisgof

Deviance goodness-of-fit = 8456.543

Prob > chi2 (14181) = 1.0000

Pearson goodness-of-fit = 21558.41

Prob > chi2 (14181) = 0.0000

Interpreting Model Results

The interpretation of results is the same across count regression models types. Model parameters communicate
the same information in both Poisson and negative binomial regression models. Therefore, the subsequent
discussion relates to the findings of Poisson models as well as negative binomial regression models.

Table 2 displays the results of a negative binomial regression model with “Risk Value” as the independent
variable and the count of Burglary incidents as the dependent variable. The effect of the independent variable on
the dependent variable can be determined by the regression coefficient, contained under the “Coef.” column in
Table 2. Since count regression techniques model the log of incident counts, the coefficients can be interpreted as
follows: for a one unit change in the independent variable, the log of dependent variable is expected to change by
the value of the regression coefficient. In the current example, for every one unit increase in a unit’s Risk Value,
the log count of burglaries is expected to increase by approximately 0.239. The statistical significance of the
coefficient is displayed by the p value, listed under the column “E*12Z1.” In this example, the p value is 0.000,
below the standard threshold of 0.05, meaning that the finding is statistically significant.
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Table 2: Negative binomial regression results

Negative binomial regression Number of obs = 14183
LR chi2 (1) = 62.41

Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -5312.6065 Pseudo R2 = 0.0058
Burg_Count Coef. Std. Err. z P>|z]| [95% Conf. Intervall]
RiskValue .2391447 .0302041 7.92 0.000 .1799457 .2983436
_cons -2.371178 .0456239 -51.97 0.000 -2.460599 -2.281757
/1lnalpha 1.397435 .0713965 1.2575 1.53737
alpha 4.044812 .2887856 3.51662 4.652337
Likelihood-ratio test of alpha=0: chibar2(01) = 703.56 Prob>=chibar2 = 0.000

Rather than reporting Poisson or negative binomial results as a regression coefficient, analysts have the
option of measuring the effect of the independent variable on the dependent variable through the Incidence Rate
Ratio (IRR). The IRR represents the change in the dependent variable in terms of a percentage increase or
decrease, with the precise percentage determined by the amount the IRR is either above or below 1. For certain
audiences, this may more clearly communicate independent variable influence than the regression coefficients. In
Table 3, the IRR for Risk Value (1.27) suggests that burglary counts increased by approximately 27% with every one
unit increase in risk. Conversely, an IRR reporting a 27% decrease would be written as 0.73 (a value 0.27 less than
1).

Table 3: Negative binomial regression results with reported incidence rate ratios

Negative binomial regression Number of obs = 14183
LR chi2 (1) = 62.41
Dispersion = mean Prob > chi2 = 0.0000
Log likelihood = -5312.6065 Pseudo R2 = 0.0058
Burg_Count IRR Std. Err. z P>|z| [95% Conf. Interval]
RiskValue 1.270162 .0383641 7.92 0.000 1.197152 1.347625
_cons .0933707 .0042599 -51.97 0.000 .0853838 .1021047
/1lnalpha 1.397435 .0713965 1.2575 1.53737
alpha 4.044812 .2887856 3.51662 4.652337
Likelihood-ratio test of alpha=0: chibar2(01) = 703.56 Prob>=chibar2 = 0.000
Conclusion

Poisson and negative binomial regression models afford analysts the opportunity to move beyond categorical data
in Risk Terrain Modeling projects. These approaches account for the unique distribution of count data and
preserve the validity and power of the statistical analysis. Count regression models also afford analysts the
opportunity to precisely measure the data distribution through Pearson goodness-of-fit tests to ensure the
selection of the correct model type. In addition, Incidence Rate Ratios can be reported to represent the impact of
independent variables in terms of a percentage change in the observed crime counts. While this brief
demonstrated these techniques in the Stata 12.1 statistical software package, many readily available statistics
programs offer similar functionality.
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